

Grade 5 Unit 4 Module 4 Practice Pages for Math at Home

© 2020 The Math Learning Center | mathlearningcenter.org The Math Learning Center grants permission to learners, families, and educators to reproduce these documents in appropriate quantities for educational use. While you may link to these resources, any other redistribution requires written permission.

2- by 3-Digit Multiplication

1 Solve each problem below using the traditional (standard) multiplication algorithm.

785	804	653
<u>× 39</u>	$\times 26$	<u>× 98</u>

- **2** Choose one problem above that you could solve easily with a different strategy. Explain which strategy you would use and why.
- **3** Fill in the boxes.

67	49
\times 76	× 27
4 2	4 3
+ 4, 9	+ 8
	,3 3

Review

- 4 Claudia says that 17×80 is the same as $17 \times 8 \times 10$. Do you agree or disagree? Explain.
- **5** Andre says that 4×27 is the same as $4 \times 3 \times 9$. Do you agree or disagree? Explain.

DATE

Division on a Base Ten Grid

1 Complete the following multiplication problems.

14	14	14	14	14	14
$\times 2$	\times 3	\times 10	\times 5	$\times 20$	<u>× 30</u>

2 Solve the following division problems. Use the multiplication problems above and the grids to help.

157

DATE

Division with Tables & Sketches

1 Fill in the ratio table for 19.

Number of Groups	1	2	10	5	20	15	
Total	19						

2 Solve the two division problems using the ratio table above and sketches to help. You can add to the ratio table if you want to.

ex $304 \div 19 = 6$ **a** $608 \div 19 = 6$ **b** $456 \div 19 = 6$

Computation	Computation	Computation
$ \begin{array}{r} $		
Sketch	Sketch	Sketch
IO 5 I I9 I90 95 I9		

3 Use the standard multiplication algorithm to solve the problems below. Show your work.

84	79	86	92
× 36	$\times 26$	<u>× 32</u>	<u>× 37</u>

Divisibility Rules

It's easy to tell if a small number like 12 is divisible by another number. With bigger numbers, like 435, it can be harder to tell. You already know how to tell if a number is divisible by 2, 5, or 10. There are also rules that can help you tell if any number is divisible by 3, 6, or 9.

Rule	Example
A number is divisible by 3 if the sum of its digits is divisible by 3.	957 is divisible by 3 because $9 + 5 + 7 = 21$, and 21 is divisible by 3. $(21 \div 3 = 7)$
A number is divisible by 6 if it is divisible by 3 (see above) and it is divisible by 2 (has a 0, 2, 4, 6, or 8 in the ones place).	786 is divisible by 6 because $7 + 8 + 6 = 21$, and 21 is divisible by 3. (21 ÷ 3 = 7) 786 also ends in 6, which means it is even (divisible by 2).
A number is divisible by 9 if the sum of its digits is divisible by 9.	837 is divisible by 9 because $8 + 3 + 7 = 18$, and 18 is divisible by 9.

1 Use the chart below to help you figure out if the numbers are divisible by 3, 6, or 9. In the last column, you don't have to list all the factors of the number. Just list any other numbers you know for sure that the number is divisible by.

Number		Sum of the Digits	Divisible by 3?	Divisible by 6?	Divisible by 9?	Also Divisible by:
ex	495	4 + 9 + 5 = 18	yes	no	yes	5
а	987					
b	540					
c	762					
d	747					
е	570					
f	645					
g	792					

Multiplication Problems & Mazes

1 Complete the multiplication problems below. Use problems you have already solved to help solve other ones.

a	18 × 2 =	b $23 \times 2 =$	C 34 × 2 =
	18 × 3 =	23 × 3 =	34 × 3 =
	18 × 10 =	23 × 10 =	34 × 10 =
	18 × 5 =	23 × 5 =	34 × 5 =

2 Use the problems above to write three more combinations for each number. Show as much work as you need to find each product.

a	18 ×	_= b	23 ×	_=	34×	_ =
	18 ×	_ =	23 ×	_ =	34 ×	_ =
	18 ×	_ =	23 ×	_ =	34 ×	_ =

3 Use multiplication and division to find the secret path through each maze. The starting and ending points are marked for you. You can only move one space up, down, over, or diagonally each time. Write four equations to explain the path through the maze.

ex

DATE

 $60 \div 20 = 3$

Mike's Measurements

Mike is moving to a new house. He is measuring his furniture to see which items will fit in his new room. Help Mike determine the measurements of his furniture.

1 Mike's bed has a base of 192 cm by 96 cm. What is the perimeter of the base of Mike's bed in meters? Show your work.

- **2** Mike's wooden storage box is 25 inches by 36 inches by 39 inches. What is the volume of Mike's box? Show your work.
- **3** Mike's room is rectangular. One wall of Mike's new room is 3.96 meters long.
 - **a** How long is this wall in centimeters?
 - **b** How long is this wall in millimeters?
- **4** Another wall in Mike's room is 2.51 meters long.
 - **a** How long is this wall in centimeters?
 - **b** How long is this wall in millimeters?
- **5** What is the area of Mike's room in square centimeters? Show your work.

DATE

Number Relationships page 1 of 2

Fill in the blanks.

5 Complete the problems.

6 Fill in the table to round numbers to the nearest ten, one, tenth, and hundredth.

Round to the Nearest:	Ten	One	Tenth	Hundredth
506.308				
715.071				
80.916				

(continued on next page)

Number Relationships page 2 of 2

Story Problems

Read the story problems. Choose one problem to solve with the standard algorithm. Choose any strategy for the other problems. Show your work and explain your choices.

7 Chloe bought sets of markers for all of her classmates. Each set cost \$0.99. If Chloe has 28 classmates, how much did all of the sets of markers cost?

Strategy:

Why did you choose this strategy?

8 The base of Tyler's cabin is a 56 feet by 78 feet rectangle. What is the area of the base of Tyler's cabin?

Strategy:

Why did you choose this strategy?

9 A female mouse can give birth to one dozen babies in a single litter.78 mice each had a dozen babies, called pups. How many pups are there?Strategy:

Why did you choose this strategy?

Note to Families

We have been practicing division at school. First we used sketches to help, and now we are practicing using a numerical method that probably looks somewhat similar to the way you learned to do long division. Look at the comparison below, and then talk to your fifth grader as he or she completes problem 2. You might enjoy using this method to solve some long division problems yourself. If so, your child can help you.

1 Fill in the blanks.

a $\frac{1}{4}$ of 36 is _____, so 0.25×36 is _____, so 25×36 is _____,

so 26 × 36 is _____, and 24 × 36 is _____.

b $\frac{1}{4}$ of 48 is _____, so $\frac{3}{4}$ of 48 is _____, so 75 × 48 is _____,

85

so 76 × 48 = _____, and 74 × 48 is _____.

(continued on next page)

© The Math Learning Center | mathlearningcenter.org

DATE

Unit 4 Review page 2 of 4

2 Solve the division problems below. For each one, complete the ratio table first. Then you can solve the problem using only numbers, or you can use sketches and numbers together. You can also add more entries to the ratio table if you want to. The first problem has been done for you as an example.

(continued on next page)

Unit 4 Review page 3 of 4

3a Maria is planning to make friendship bracelets to sell at the farmers' market. Each bracelet costs \$1.25 to make. Use the ratio table to show your strategy for finding the cost to make 19 bracelets.

Number of Bracelets	1				
Cost	\$1.25				

The cost to make 19 bracelets is _____.

b Use the ratio table to show your strategy for finding how many bracelets Maria can make for \$126.25.

Number of Bracelets	1				
Cost	\$1.25				

Maria can make _____ bracelets for \$126.25.

4 Solve the problems below. Use the standard algorithm for one problem. Use any strategies for the other problems. Show your work. Explain your choice of strategy.

26	28	36
<u>× 36</u>	<u>× 36</u>	<u>× 36</u>

Why did you choose this strategy?	Why did you choose this strategy?
	Why did you choose this strategy?

(continued on next page)

Unit 4 Review page 4 of 4

5 Fill in the boxes to complete each multiplication combination below using the standard algorithm.

Answer Keys

NAME

2- by 3-Digit Multiplication

1 Solve each problem below using the traditional (standard) multiplication algorithm.

785	804	653
× 39	$\times 26$	× 98
7065	4824	5224
+ 23,550	+ 16,080	+ 58,770
30,615	20,904	63,994

2 Choose one problem above that you could solve easily with a different strategy. Explain which strategy you would use and why.

Responses and explanations will vary.

3 Fill in the boxes.

67	49
<u>× 76</u>	× 27
4 0 2	3 43
+ 4, 690	+ 980
5,092	1 , 3 2 3

Review

- Claudia says that 17 × 80 is the same as 17 × 8 × 10. Do you agree or disagree? Explain.
 Claudia is correct. Explanations will vary.
- 5 Andre says that 4×27 is the same as $4 \times 3 \times 9$. Do you agree or disagree? Explain. Andre is correct. Explanations will vary.

NAME

Division on a Base Ten Grid

1 Complete the following multiplication problems.

14	14	14	14	14	14
$\times 2$	\times 3	\times 10	\times 5	\times 20	\times 30
28	42	140	70	280	420

2 Solve the following division problems. Use the multiplication problems above and the grids to help. Work will vary. Examples shown.

Division with Tables & Sketches

1 Fill in the ratio table for 19.

Number of Groups	1	2	10	5	20	15	
Total	19	38	190	95	380	285	

2 Solve the two division problems using the ratio table above and sketches to help. You can add to the ratio table if you want to.

ex $304 \div 19 = 6$ **a** $608 \div 19 = 32$ **b** $456 \div 19 = 24$

Computation	Computation	Computation
$ \begin{bmatrix} $	Work w	vill vary
Sketch	Sketch	Sketch
IO 5 I I9 I90 95 I9	Work w	vill vary

3 Use the standard multiplication algorithm to solve the problems below. Show your work.

1	1		
Z	Z	1	1
84	79	86	92
<u>× 36</u>	$\times 26$	\times 32	$\times 37$
504	474	172	644
<u>+ 2520</u>	<u>+ 1580</u>	<u>+ 2580</u>	<u>+ 2760</u>
3,024	2,054	2,752	3,404

Divisibility Rules

It's easy to tell if a small number like 12 is divisible by another number. With bigger numbers, like 435, it can be harder to tell. You already know how to tell if a number is divisible by 2, 5, or 10. There are also rules that can help you tell if any number is divisible by 3, 6, or 9.

Rule	Example
A number is divisible by 3 if the sum of its digits is divisible by 3.	957 is divisible by 3 because $9 + 5 + 7 = 21$, and 21 is divisible by 3. $(21 \div 3 = 7)$
A number is divisible by 6 if it is divisible by 3 (see above) and it is divisible by 2 (has a 0, 2, 4, 6, or 8 in the ones place).	786 is divisible by 6 because $7 + 8 + 6 = 21$, and 21 is divisible by 3. (21 ÷ 3 = 7) 786 also ends in 6, which means it is even (divisible by 2).
A number is divisible by 9 if the sum of its digits is divisible by 9.	837 is divisible by 9 because $8 + 3 + 7 = 18$, and 18 is divisible by 9.

1 Use the chart below to help you figure out if the numbers are divisible by 3, 6, or 9. In the last column, you don't have to list all the factors of the number. Just list any other numbers you know for sure that the number is divisible by.

Number		Sum of the Digits	Divisible by 3?	Divisible by 6?	Divisible by 9?	Also Divisible by:
ex	495	4 + 9 + 5 = 18	yes	no	^{yes} An	swers will va
а	987	9 + 8 + 7 = 24	yes	no	no	1
b	540	5 + 4 + 0 = 9	yes	yes	yes	10, 2, 5
c	762	7 + 6 + 2 = 15	yes	yes	no	2
d	747	7 + 4 + 7 = 18	yes	no	yes	1
е	570	5 + 7 + 0 = 12	yes	yes	no	2, 5, 10
f	645	6 + 4 + 5 = 15	yes	no	no	5
g	792	7 + 9 + 2 = 18	yes	yes	yes	2

NAME

Multiplication Problems & Mazes

1 Complete the multiplication problems below. Use problems you have already solved to help solve other ones.

a	18 × 2 = 36	b $23 \times 2 = $ 46	C $34 \times 2 = $ 68
	18 × 3 = 54	23 × 3 =69	34 × 3 = 102
	18 × 10 = <u>180</u>	23 × 10 = 230	34 × 10 = 340
	18 × 5 = 90	23 × 5 = <u>115</u>	34 × 5 = 170

2 Use the problems above to write three more combinations for each number. Show as much work as you need to find each product.Combinations will vary.

a	18 ×	_ =	b 23 × =	C 34 × =
	18 ×	_ =	23 × =	34 × =
	18 ×	_ =	23 × =	34 × =

3 Use multiplication and division to find the secret path through each maze. The starting and ending points are marked for you. You can only move one space up, down, over, or diagonally each time. Write four equations to explain the path through the maze.

ex

Mike's Measurements

Mike is moving to a new house. He is measuring his furniture to see which items will fit in his new room. Help Mike determine the measurements of his furniture.

1 Mike's bed has a base of 192 cm by 96 cm. What is the perimeter of the base of Mike's bed in meters? Show your work.

5.76 meters; work will vary.

2 Mike's wooden storage box is 25 inches by 36 inches by 39 inches. What is the volume of Mike's box? Show your work.

35,100 cubic inches; work will vary.

- **3** Mike's room is rectangular. One wall of Mike's new room is 3.96 meters long.
 - **a** How long is this wall in centimeters?

396 cm

b How long is this wall in millimeters?

3,960 mm

- **4** Another wall in Mike's room is 2.51 meters long.
 - **a** How long is this wall in centimeters?

251 cm

b How long is this wall in millimeters?

2,510 mm

5 What is the area of Mike's room in square centimeters? Show your work.

99,396 sq cm.; work will vary.

Number Relationships page 1 of 2

Fill in the blanks.

- **1** $\frac{3}{4}$ of 12 is <u>9</u>, so $0.75 \times 12 = \underline{9}$, and $75 \times 12 = \underline{900}$. **2** $\frac{1}{4}$ of 8 is <u>2</u>, so $0.25 \times 8 = \underline{2}$, and $25 \times 8 = \underline{200}$. **3** $\frac{1}{4}$ of 9 is <u>2.25</u>, so $0.25 \times 9 = \underline{2.25}$, and $25 \times 9 = \underline{225}$. **4** $\frac{3}{4}$ of 82 is <u>61.5</u>, so $0.75 \times 82 = \underline{61.5}$, and $75 \times 82 = \underline{6,150}$
- **5** Complete the problems.

873	304
\times 27	\times 89
6,1 1 1	2,7 3 6
+ 1 7 ,46 0	+ 24,320
23,571	27, 0 5 6

6 Fill in the table to round numbers to the nearest ten, one, tenth, and hundredth.

Round to the Nearest:	Ten	One	Tenth	Hundredth
506.308	510	506	506.3	506.31
715.071	720	715	715.1	715.07
80.916	80	81	80.9	80.92

DATE

(continued on next page)

Number Relationships page 2 of 2

Story Problems

Read the story problems. Choose one problem to solve with the standard algorithm. Choose any strategy for the other problems. Show your work and explain your choices.

7 Chloe bought sets of markers for all of her classmates. Each set cost \$0.99. If Chloe has 28 classmates, how much did all of the sets of markers cost?

Strategy:

Why did you choose this strategy?

\$27.72 Strategies and explanations will vary.

DATE

8 The base of Tyler's cabin is a 56 feet by 78 feet rectangle. What is the area of the base of Tyler's cabin?

Strategy:

Why did you choose this strategy?

4,368 sq. ft. Strategies and explanations will vary.

9 A female mouse can give birth to one dozen babies in a single litter.78 mice each had a dozen babies, called pups. How many pups are there?

Strategy:

Why did you choose this strategy?

936 pups Strategies and explanations will vary.

Note to Families

We have been practicing division at school. First we used sketches to help, and now we are practicing using a numerical method that probably looks somewhat similar to the way you learned to do long division. Look at the comparison below, and then talk to your fifth grader as he or she completes problem 2. You might enjoy using this method to solve some long division problems yourself. If so, your child can help you.

A Familiar Way	A New, Similar Way							
27	$\begin{array}{c}2\\5\\10\\0\end{array}$							
13) 481 - 39	$13) \frac{20^{3}}{481}$	Number of Groups	1	10	20	5		
9 - 9	221	Total	13	130	260	65		
0	9 I - 6 5							
	26							
	0							

1 Fill in the blanks.

- **a** $\frac{1}{4}$ of 36 is <u>9</u>, so 0.25×36 is <u>9</u>, so 25×36 is <u>900</u>, so 26×36 is <u>936</u>, and 24×36 is <u>864</u>.
- **b** $\frac{1}{4}$ of 48 is <u>12</u>, so $\frac{3}{4}$ of 48 is <u>36</u>, so 75 × 48 is <u>3,600</u>,

so
$$76 \times 48 = 3,648$$
, and 74×48 is 3,552.

(continued on next page)

Unit 4 Review page 2 of 4

2 Solve the division problems below. For each one, complete the ratio table first. Then you can solve the problem using only numbers, or you can use sketches and numbers together. You can also add more entries to the ratio table if you want to. The first problem has been done for you as an example. Work will vary.

(continued on next page)

Unit 4 Review page 3 of 4

3a Maria is planning to make friendship bracelets to sell at the farmers' market. Each bracelet costs \$1.25 to make. Use the ratio table to show your strategy for finding the cost to make 19 bracelets. **Work will vary. Example shown.**

Number of Bracelets	1	10	20	19			
Cost	\$1.25	\$12.50	\$25	\$23.75			

The cost to make 19 bracelets is **\$23.75**

b Use the ratio table to show your strategy for finding how many bracelets Maria can make for \$126.25. **Work will vary. Example shown.**

Number of Bracelets	1	100	101			
Cost	\$1.25	\$125	\$126.50			

Maria can make <u>101</u> bracelets for \$126.25.

4 Solve the problems below. Use the standard algorithm for one problem. Use any strategies for the other problems. Show your work. Explain your choice of strategy.

26	28	36
<u>× 36</u>	<u>× 36</u>	$\times 36$
936	1,008	1,296
Why did you choose this strategy?	Why did you choose this strategy?	Why did you choose this strategy?
Strategie	s and explanations	will vary.

(continued on next page)

| DATE

NAME

Unit 4 Review page 4 of 4

5 Fill in the boxes to complete each multiplication combination below using the standard algorithm.

1	1	1
1 46	506	622
<u>× 32</u>	<u>× 31</u>	<u>× 77</u>
9 2	5 06	4,3 5 4
+ 1380	+ 15, 180	+ 43 ,540
1, 4 7 2	15,686	4 7 ,8 9 4