

Grade 5 Unit 1 Module 1 Practice Pages for Math at Home

The Bridges Second Edition Module Packets, available from the Home Learning Resources page of the Bridges Educator Site, are designed to provide a review of math topics that were covered in class prior to school closures. They are meant for teachers
to send home, so students can continue to engage with key grade-level skills. The material in these packets includes exercises that can be completed by students at home with their families.

You Choose

1 Choose 15 of the problems below to solve.

$8 \times 5=$	$7 \times 7=$	$4 \times 6=$	$3 \times 8=$	$4 \times 7=$
$4 \times 9=$	$6 \times 7=$	$6 \times 8=$	$8 \times 4=$	$3 \times 6=$
$10 \times 4=$	$8 \times 10=$	$8 \times 9=$	$6 \times 11=$	$12 \times 10=$
$15 \times 4=$	$40 \times 6=$	$50 \times 8=$	$10 \times 9=$	$14 \times 9=$
$25 \times 4=$	$11 \times 9=$	$6 \times 12=$	$12 \times 9=$	$7 \times 60=$
$30 \times 6=$	$13 \times 8=$	$11 \times 5=$	$25 \times 8=$	$12 \times 8=$

2 Explain how you decided which problems to solve.

Facts \& Boxes

1 To multiply numbers by 5, Kaylee first multiplies by 10 and then finds half the product.
a Write an expression with parentheses to show how Kaylee would solve 9×5.
b What is 9×5 ?
C Marshall says he would rather use 10×5 to find 9×5.
Write an expression with parentheses that uses 10×5 to find 9×5.

Match each expression with the correct box.
24 layers of 3 -by- 5 cubes $(3 \times 5) \times 4$
a

34 layers of 3-by-2 cubes $(3 \times 2) \times 4$

44 layers of 3-by- 4 cubes $(3 \times 4) \times 4$
b

C

5 Fill in the dimensions of this box: (

\qquad \times \qquad) \times \qquad

6 Solve the following problems.

8
$\times 8$
$\times 4$
$\times 10$

Fact Connections

1 Fill in the facts. Look for relationships.

3	3	3	6	6
$\times 2$	$\times 8$	$\times 2$	$\times 4$	$\times 8$

2 Use the above information to help you fill in the blanks.
a $3 \times 4=$ \qquad $\times(3 \times 2)=$ \qquad
b $3 \times 8=$ \qquad $\times(3 \times 4)=$ \qquad
C $6 \times 2=(3 \times 2) \times$ \qquad $=$ \qquad
d $6 \times 4=2 \times(6 \times$ \qquad) $=$ \qquad
e $2 \times(6 \times 4)=$ \qquad $\times 8=$ \qquad
3 Fill in the facts. Look for relationships.

4	4	4	8	8
$\times 2$	$\underline{8}$	$\underline{8}$	$\underline{8}$	$\underline{8}$

4 Use the above information to help you write an equation that includes parentheses.
ex $8 \times 4=2 \times(8 \times 2)$ "To find 8×4, I can double 8×2."
a $4 \times 6=$
b $4 \times 12=$
C $8 \times 8=$
5 Challenge Complete the following equations.
a $4 \times 67=$ \qquad $\times(2 \times 67)$
b $8 \times 198=2 \times($ \qquad $\times 198$)
\qquad $\times 3,794=2 \times(4 \times 3,794)$

What's the Problem? page 1 of 2

ex To find 3 times any number, Maria doubles the number, then adds the number again.
a Write an expression with parentheses to show how Maria would solve 3×6. $(2 \times 6)+6$
b What is 3×6 ? 18
C What is another way to think about 3×6 ?
You could do 3×5, which is really easy, and then add 3 more, like this $(3 \times 5)+3$
1 To find 4 times any number, Susan uses the Double-Double strategy (multiply by 2 , then by 2 again). Susan wrote $(2 \times 9) \times 2$ to record how she would solve 4×9.
a What is 4×9 ?
b What is another way to solve 4×9 ?

2 To find 5 times any number, Kaylee first multiplies by 10 and then finds half the product.
a Write an expression with parentheses to show how Kaylee would solve 7×5.
b What is 7×5 ?
C What is another way to solve 7×5 ?

3 When given any number times 9, Jasper multiplies the number by 10 and then removes one group of the number.
a Write an expression with parentheses to show how Jasper would solve 3×9.
b What is 3×9 ?
C What is another way to think about 3×9 ?
(continued on next page)

What's the Problem? page 2 of 2

4 Braden loves multiplying by 8 because he can double-double-double.
a Write an expression with parentheses to show how Braden would solve 8×7.
b What is 8×7 ?
C What is another way to think about 8×7 ?

5 Jonah was asked to add 4 and 7 then multiply the sum by 9. Which expression shows Jonah's problem? (The sum is the answer to an addition problem.)
a $(4+7) \times 9$
b $(7-4) \times 9$
C $4+(7 \times 9)$

6 Patrick needed to multiply 4 and 6 then subtract 12 from the product. Write an expression with parentheses to show the problem. (The product is the answer to a multiplication problem.)

7 Violet divided 81 by 9 then multiplied the quotient by 3 . Write an expression with parentheses to show the problem. (The quotient is the answer to a division problem.)

8 Solve.
a $54-(3 \times 8)$
b $(28 \div 7) \times 4$

9 CHALLENGE Rafael was given the problem 44×9. Write an expression to show how you would solve the problem.

Multiplication Connections page 1 of 2

ex To multiply a number by 5 , Marissa first multiplies by 10 and then finds half the product.
ex Write an expression with parentheses to show how Marissa would solve 24×5. $(24 \times 10) \div 2$
ex What is 24×5 ?
120
1 To multiply a number by 12, Carter likes to multiply the number by 10 and then multiply it by 2 and add the products. Here is a picture of his thinking.

a Write an expression with parentheses to show how Carter would solve 12×16.
b What is 12×16 ? \qquad
2 To multiply a number by 99 , Sofia likes to multiply by 100 and then subtract 1 group of the factor. Here is a picture of her thinking.

a Write an expression with parentheses to show how Sofia would solve 8×99.
b What is 8×99 ? \qquad

Multiplication Connections page 2 of 2

3 Fill in the dimensions of this box: \qquad \times \qquad \times \qquad

4 Solve the following problems.
$\begin{array}{r}2 \\ \times \quad 13 \\ \hline\end{array}$

28
$\begin{array}{r} \\ \times 5 \\ \hline\end{array}$
28
$\times 15$
\times
13 52

5 Find the products.
a $(2 \times 5) \times 8=$ \qquad
b $(2 \times 8) \times 5=$ \qquad
C $(5 \times 8) \times 2=$ \qquad

6 Which of the problems in item 5 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why?

7 Find the products.
a $(6 \times 7) \times 10=$ \qquad b $(6 \times 10) \times 7=$
C $(7 \times 10) \times 6=$ \qquad

8 Which of the problems in item 7 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why?

Answer Keys

You Choose

1 Choose 15 of the problems below to solve.

$8 \times 5=$ 40	$7 \times 7=$	$4 \times 6=$	$3 \times 8=$	$4 \times 7=$
$4 \times 9=$	$6 \times 7=$ 42	$6 \times 8=$	$8 \times 4=$ 32	$3 \times 6=$ 18
$10 \times 4=$	$8 \times 10=$ 80	$8 \times 9=$	$\begin{array}{r} 6 \times 11= \\ 66 \end{array}$	$12 \times 10=$ 120
$\begin{array}{r} 15 \times 4= \\ 60 \end{array}$	$40 \times 6=$ 240	$50 \times 8=$ 400	$10 \times 9=$	$14 \times 9=$ 126
$25 \times 4=$ 100	$11 \times 9=$	$\begin{array}{r} 6 \times 12= \\ 72 \end{array}$	$12 \times 9=$	$7 \times 60=$ 420
$30 \times 6=$ 180	$13 \times 8=$ 104	$11 \times 5=$	$\begin{array}{r} 25 \times 8= \\ 200 \end{array}$	$12 \times 8=$

2 Explain how you decided which problems to solve.

Explanations will vary.

Facts \& Boxes

1 To multiply numbers by 5, Kaylee first multiplies by 10 and then finds half the product.
a Write an expression with parentheses to show how Kaylee would solve 9×5.

$$
(9 \times 10) \div 2
$$

b What is 9×5 ?

$$
45
$$

C Marshall says he would rather use 10×5 to find 9×5.
Write an expression with parentheses that uses 10×5 to find 9×5.

$$
(10 \times 5)-(1 \times 5)
$$

Match each expression with the correct box.
24 layers of 3-by-5 cubes $(3 \times 5) \times 4$

34 layers of 3-by-2 cubes $(3 \times 2) \times 4$

44 layers of 3 -by- 4 cubes $(3 \times 4) \times 4$

C

5 Fill in the dimensions of this box: $(\underline{6} \times \underline{2}) \times \underline{2}$

6 Solve the following problems.

8	8	12	12	3	7
$\times 4$					
32	$\times 8$				
64	$\times 10$	$\underline{5}$	$\underline{7}$	$\underline{6}$	$\times 6$
120	60	21	42	42	

Fact Connections

1 Fill in the facts. Look for relationships.

3	3	3	6	6
$\times 2$	$\times 4$	$\times 8$	$\times 2$	
6	24	$\times 4$	$\times 8$	
12		48		

2 Use the above information to help you fill in the blanks.
a $3 \times 4=\underline{2} \times(3 \times 2)=\underline{12}$
b $3 \times 8=\underline{2} \times(3 \times 4)=\underline{24}$
C $6 \times 2=(3 \times 2) \times \underline{2}=\underline{12}$
d $6 \times 4=2 \times(6 \times \underline{2})=\underline{24}$
e $2 \times(6 \times 4)=\underline{6} \times 8=\underline{48}$
3 Fill in the facts. Look for relationships.

4	4	4	8	8
$\times 2$				
8	$\times 4$			
16	$\frac{\times 8}{32}$	$\frac{\times 2}{16}$	$\frac{\times 4}{32}$	$\frac{\times 8}{64}$

4 Use the above information to help you write an equation that includes parentheses. ex $8 \times 4=2 \times(8 \times 2)$ "To find 8×4, I can double 8×2."

Equations may vary. Examples shown:
a $4 \times 6=2 \times(2 \times 6)$
b $4 \times 12=2 \times(4 \times 6)$
C $8 \times 8=2 \times(8 \times 4)$
5 ChALLENGE Complete the following equations.
a $4 \times 67=$ _ $2 \times(2 \times 67)$
b $8 \times 198=2 \times(\underline{4} \times 198)$
C $\quad 8 \quad \times 3,794=2 \times(4 \times 3,794)$

What's the Problem? page 1 of 2

ex To find 3 times any number, Maria doubles the number, then adds the number again.
a Write an expression with parentheses to show how Maria would solve 3×6. $(2 \times 6)+6$
b What is 3×6 ? 18
C What is another way to think about 3×6 ?
You could do 3×5, which is really easy, and then add 3 more, like this $(3 \times 5)+3$
1 To find 4 times any number, Susan uses the Double-Double strategy (multiply by 2, then by 2 again). Susan wrote $(2 \times 9) \times 2$ to record how she would solve 4×9.
a What is 4×9 ? 36
b What is another way to solve 4×9 ? Work will vary. Example:

$$
(4 \times 4)+(4 \times 5)=16+20=36
$$

2 To find 5 times any number, Kaylee first multiplies by 10 and then finds half the product.
a Write an expression with parentheses to show how Kaylee would solve 7×5. $(7 \times 10) \div 2$ (may vary slightly)
b What is 7×5 ? 35
C What is another way to solve 7×5 ? Work will vary. Example:
$(5 \times 5)+(2 \times 5)=25+10=35$
3 When given any number times 9 , Jasper multiplies the number by 10 and then removes one group of the number.
a Write an expression with parentheses to show how Jasper would solve 3×9.
$(3 \times 10)-3$ (may vary slightly)
b What is 3×9 ? 27
C What is another way to think about 3×9 ?
Work will vary. Example:
$(3 \times 5)+(3 \times 4)=15+12=27$
(continued on next page)

What's the Problem? page 2 of 2

4 Braden loves multiplying by 8 because he can double-double-double.
a Write an expression with parentheses to show how Braden would solve 8×7. $((7 \times 2) \times 2) \times 2$
b What is 8×7 ? 56
C What is another way to think about 8×7 ? Work will vary. Example: $(4 \times 7) \times 2$

5 Jonah was asked to add 4 and 7 then multiply the sum by 9 . Which expression shows Ionah's problem? (The sum is the answer to an addition problem.)
a $(4+7) \times 9$
b $(7-4) \times 9$
C $4+(7 \times 9)$

6 Patrick needed to multiply 4 and 6 then subtract 12 from the product. Write an expression with parentheses to show the problem. (The product is the answer to a multiplication problem.) Example: $(4 \times 6)-12$

Note: parentheses are not required due to order of operations. Students may omit them.

7 Violet divided 81 by 9 then multiplied the quotient by 3 . Write an expression with parentheses to show the problem. (The quotient is the answer to a division problem.) Example: $(81 \div 9) \times 3$ Note: parentheses are not required due to order of operations. Students may omit them.
8 Solve.
a $54-(3 \times 8)$
b $(28 \div 7) \times 4$
30

9 CHALLENGE Rafael was given the problem 44×9. Write an expression to show how you would solve the problem.
Work will vary. Example: $(44 \times 10)-(44 \times 1)=440-44=396$

Multiplication Connections page 1 of 2

ex To multiply a number by 5 , Marissa first multiplies by 10 and then finds half the product.
ex Write an expression with parentheses to show how Marissa would solve 24×5. $(24 \times 10) \div 2$
ex What is 24×5 ?
120
1 To multiply a number by 12, Carter likes to multiply the number by 10 and then multiply it by 2 and add the products. Here is a picture of his thinking.

a Write an expression with parentheses to show how Carter would solve 12×16. Example: $(16 \times 10)+(16 \times 2)$
b What is 12×16 ? 192
2 To multiply a number by 99, Sofia likes to multiply by 100 and then subtract 1 group of the factor. Here is a picture of her thinking.

a Write an expression with parentheses to show how Sofia would solve 8×99. Example: $(8 \times 100)-(8 \times 1)$
b What is 8×99 ? 792

Multiplication Connections page 2 of 2

3 Fill in the dimensions of this box: \qquad \times \qquad \times \qquad 9

Note: Students may record the dimensions in any order.

4 Solve the following problems.

2					
$\times 13$	8	10	28	28	13
$\times 13$					
26	$\times 13$				
52	104	$\times 28$	$\times 5$	$\times 15$	$\times \quad 4$

5 Find the products.
a $(2 \times 5) \times 8=\underline{80}$
b $(2 \times 8) \times 5=\underline{80}$
C $(5 \times 8) \times 2=\underline{80}$

6 Which of the problems in item 5 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why? Responses will vary.

7 Find the products.
a $(6 \times 7) \times 10=\underline{\mathbf{4 2 0}}$
b $(6 \times 10) \times 7=\underline{420}$
C $(7 \times 10) \times 6=\underline{420}$

8 Which of the problems in item 7 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why?
Responses will vary.

