

Grade 5 Unit 1 Module 1 Practice Pages for Math at Home

The Bridges Second Edition Module Packets, available from the Home Learning Resources page of the Bridges Educator Site, are designed to provide a review of math topics that were covered in class prior to school closures. They are meant for teachers to send home, so students can continue to engage with key grade-level skills. The material in these packets includes exercises that can be completed by students at home with their families.

© 2020 The Math Learning Center | mathlearningcenter.org The Math Learning Center grants permission to learners, families, and educators to reproduce these documents in appropriate quantities for educational use. While you may link to these resources, any other redistribution requires written permission.

1 Choose 15 of the problems below to solve.

	problems below			
8 × 5 =	7 × 7 =	4 × 6 =	3 × 8 =	4 × 7 =
4 × 9 =	6 × 7 =	6 × 8 =	8 × 4 =	3 × 6 =
10 × 4 =	8 × 10 =	8 × 9 =	6 × 11 =	12 × 10 =
15 × 4 =	40 × 6 =	50 × 8 =	10 × 9 =	14 × 9 =
25 × 4 =	11 × 9 =	6 × 12 =	12 × 9 =	7 × 60 =
30 × 6 =	13 × 8 =	11 × 5 =	25 × 8 =	12 × 8 =

2 Explain how you decided which problems to solve.

DATE

2

- **1** To multiply numbers by 5, Kaylee first multiplies by 10 and then finds half the product.
 - **a** Write an expression with parentheses to show how Kaylee would solve 9×5 .
 - **b** What is 9×5 ?
 - **C** Marshall says he would rather use 10×5 to find 9×5 . Write an expression with parentheses that uses 10×5 to find 9×5 .

Match each expression with the correct box.

- **2** 4 layers of 3-by-5 cubes $(3 \times 5) \times 4$
- **3** 4 layers of 3-by-2 cubes $(3 \times 2) \times 4$
- 4 layers of 3-by-4 cubes $(3 \times 4) \times 4$

DATE

5

42

Fact Connections

1 Fill in the facts. Look for relationships.

3	3	3	6	6	6
$\times 2$	$\times 4$	$\times 8$	$\times 2$	$\times 4$	$\times 8$

2 Use the above information to help you fill in the blanks.

- **a** 3 × 4 = ____ × (3 × 2) = ____
- **b** $3 \times 8 = ___ \times (3 \times 4) = __$
- **C** $6 \times 2 = (3 \times 2) \times ___= ___$
- $\mathbf{d} \quad 6 \times 4 = 2 \times (6 \times \underline{\qquad}) = \underline{\qquad}$
- **e** $2 \times (6 \times 4) = ___ \times 8 = __$
- **3** Fill in the facts. Look for relationships.

4	4	4	8	8	8
$\times 2$	$\times 4$	$\times 8$	$\times 2$	$\times 4$	$\times 8$

4 Use the above information to help you write an equation that includes parentheses.

EX $8 \times 4 = 2 \times (8 \times 2)$ "To find 8×4 , I can double 8×2 ."

- **a** 4 × 6 =
- **b** 4 × 12 =
- **C** $8 \times 8 =$
- **5 CHALLENGE** Complete the following equations.
 - **a** $4 \times 67 = \underline{\qquad} \times (2 \times 67)$
 - **b** $8 \times 198 = 2 \times (___ \times 198)$
 - **C** _____ \times 3,794 = 2 × (4 × 3,794)

What's the Problem? page 1 of 2

ex To find 3 times any number, Maria doubles the number, then adds the number again.

- **a** Write an expression with parentheses to show how Maria would solve 3×6 . (2 × 6) + 6
- **b** What is 3×6 ? 18
- C What is another way to think about 3×6 ? You could do 3×5 , which is really easy, and then add 3 more, like this $(3 \times 5) + 3$
- **1** To find 4 times any number, Susan uses the Double-Double strategy (multiply by 2, then by 2 again). Susan wrote $(2 \times 9) \times 2$ to record how she would solve 4×9 .
 - **a** What is 4×9 ?
 - **b** What is another way to solve 4×9 ?
- **2** To find 5 times any number, Kaylee first multiplies by 10 and then finds half the product.
 - **a** Write an expression with parentheses to show how Kaylee would solve 7×5 .
 - **b** What is 7×5 ?
 - **C** What is another way to solve 7×5 ?
- **3** When given any number times 9, Jasper multiplies the number by 10 and then removes one group of the number.
 - **a** Write an expression with parentheses to show how Jasper would solve 3×9 .
 - **b** What is 3×9 ?
 - **C** What is another way to think about 3×9 ?

(continued on next page)

NAME

What's the Problem? page 2 of 2

- **4** Braden loves multiplying by 8 because he can double-double.
 - **a** Write an expression with parentheses to show how Braden would solve 8×7 .
 - **b** What is 8×7 ?
 - **C** What is another way to think about 8×7 ?
- **5** Jonah was asked to add 4 and 7 then multiply the sum by 9. Which expression shows Jonah's problem? (The *sum* is the answer to an addition problem.)
 - **a** $(4+7) \times 9$ **b** $(7-4) \times 9$ **c** $4+(7 \times 9)$
- **6** Patrick needed to multiply 4 and 6 then subtract 12 from the product. Write an expression with parentheses to show the problem. (The *product* is the answer to a multiplication problem.)
- **7** Violet divided 81 by 9 then multiplied the quotient by 3. Write an expression with parentheses to show the problem. (The *quotient* is the answer to a division problem.)
- **8** Solve.
 - **a** 54 (3 × 8)

b $(28 \div 7) \times 4$

9 CHALLENGE Rafael was given the problem 44×9 . Write an expression to show how you would solve the problem.

Multiplication Connections page 1 of 2

- **ex** To multiply a number by 5, Marissa first multiplies by 10 and then finds half the product.
 - **ex** Write an expression with parentheses to show how Marissa would solve 24×5 . (24 × 10) ÷ 2
 - **ex** What is 24 × 5?
- **1** To multiply a number by 12, Carter likes to multiply the number by 10 and then multiply it by 2 and add the products. Here is a picture of his thinking.

- **a** Write an expression with parentheses to show how Carter would solve 12×16 .
- **b** What is 12 × 16? _____
- **2** To multiply a number by 99, Sofia likes to multiply by 100 and then subtract 1 group of the factor. Here is a picture of her thinking.

- **a** Write an expression with parentheses to show how Sofia would solve 8×99 .
- **b** What is 8 × 99? _____

3

DATE

Multiplication Connections page 2 of 2

3	Fill in the d	limensions	of this box:	×	×		
4	Solve the fo	llowing pro	blems.				
	2×13		8 <u>× 13</u>	$\frac{10}{\times 28}$	$\frac{28}{\times 5}$	28 × 15	13 × 52
5	Find the pr a (2×5)	oducts. × 8 =	_ b	$(2 \times 8) \times 5 =$		C (5 × 8	3) × 2 =

6 Which of the problems in item 5 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why?

- 7 Find the products. **a** $(6 \times 7) \times 10 =$ **b** $(6 \times 10) \times 7 =$ **c** $(7 \times 10) \times 6 =$ ____
- **8** Which of the problems in item 7 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why?

Answer Keys

1 Choose 15 of the problems below to solve.

8 × 5 =	7 × 7 =	4 × 6 =	3 × 8 =	4 × 7 =
40	49	24	24	28
4 × 9 =	6 × 7 =	6 × 8 =	8 × 4 =	3 × 6 =
36	42	48	32	18
10 × 4 =	8 × 10 =	8 × 9 =	6 × 11 =	12 × 10 =
40	80	72	66	120
15 × 4 =	40 × 6 =	50 × 8 =	10 × 9 =	14 × 9 =
60	240	400	90	126
25 × 4 =	11 × 9 =	6 × 12 =	12 × 9 =	7 × 60 =
100	99	72	108	420
30 × 6 =	13 × 8 =	11 × 5 =	25 × 8 =	12 × 8 =
180	104	55	200	96

2 Explain how you decided which problems to solve.

Explanations will vary.

DATE

- **1** To multiply numbers by 5, Kaylee first multiplies by 10 and then finds half the product.
 - **a** Write an expression with parentheses to show how Kaylee would solve 9×5 . (9×10) ÷ 2

a

b

С

layers

- **b** What is 9×5 ?
 - 45 at 10 9 A 9.
- **C** Marshall says he would rather use 10×5 to find 9×5 . Write an expression with parentheses that uses 10×5 to find 9×5 .

 $(10 \times 5) - (1 \times 5)$

Match each expression with the correct box.

- **2** 4 layers of 3-by-5 cubes $(3 \times 5) \times 4$
- **3** 4 layers of 3-by-2 cubes $(3 \times 2) \times 4$
- 4 layers of 3-by-4 cubes $(3 \times 4) \times 4$

6 Solve the following problems.

8	8	12	12	3	7	7
$\times 4$	$\times 8$	<u>× 10</u>	<u>× 5</u>	$\times 7$	<u>× 6</u>	<u>× 6</u>
32	64	120	60	21	42	42

NAME

Fact Connections

1 Fill in the facts. Look for relationships.

3	3	3	6	6	6
$\times 2$	$\underline{\times 4}$	$\times 8$	$\times 2$	$\times 4$	$\times 8$
6	12	24			48

2 Use the above information to help you fill in the blanks.

- **a** $3 \times 4 = \underline{2} \times (3 \times 2) = \underline{12}$
- **b** $3 \times 8 = 2 \times (3 \times 4) = 24$
- **C** $6 \times 2 = (3 \times 2) \times 2 = 12$
- **d** $6 \times 4 = 2 \times (6 \times \underline{2}) = \underline{24}$
- **e** $2 \times (6 \times 4) = 6 \times 8 = 48$

3 Fill in the facts. Look for relationships.

4	4	4	8	8	8
$\times 2$	$\times 4$	$\times 8$	$\times 2$	$\times 4$	<u>× 8</u> 64
8	16	32	16	32	64

4 Use the above information to help you write an equation that includes parentheses.

ex $8 \times 4 = 2 \times (8 \times 2)$ "To find 8×4 , I can double 8×2 ." Equations may vary. Examples shown:

- **a** $4 \times 6 = \mathbf{2} \times (\mathbf{2} \times \mathbf{6})$
- **b** $4 \times 12 = 2 \times (4 \times 6)$
- $\mathbf{C} \quad 8 \times 8 = \mathbf{2} \times (\mathbf{8} \times \mathbf{4})$
- **5 CHALLENGE** Complete the following equations.
 - **a** $4 \times 67 = \underline{2} \times (2 \times 67)$
 - **b** $8 \times 198 = 2 \times (_4_ \times 198)$
 - **C** <u>8</u> \times 3,794 = 2 \times (4 \times 3,794)

What's the Problem? page 1 of 2

ex To find 3 times any number, Maria doubles the number, then adds the number again.

- **a** Write an expression with parentheses to show how Maria would solve 3×6 . (2 × 6) + 6
- **b** What is 3×6 ? 18
- C What is another way to think about 3×6 ? You could do 3×5 , which is really easy, and then add 3 more, like this $(3 \times 5) + 3$
- **1** To find 4 times any number, Susan uses the Double-Double strategy (multiply by 2, then by 2 again). Susan wrote $(2 \times 9) \times 2$ to record how she would solve 4×9 .
 - **a** What is 4×9 ? **36**
 - **b** What is another way to solve 4×9 ? Work will vary. Example: $(4 \times 4) + (4 \times 5) = 16 + 20 = 36$
- **2** To find 5 times any number, Kaylee first multiplies by 10 and then finds half the product.
 - Write an expression with parentheses to show how Kaylee would solve 7 × 5.
 (7 × 10) ÷ 2 (may vary slightly)
 - **b** What is 7×5 ? **35**
 - C What is another way to solve 7×5 ? Work will vary. Example: $(5 \times 5) + (2 \times 5) = 25 + 10 = 35$
- **3** When given any number times 9, Jasper multiplies the number by 10 and then removes one group of the number.
 - **a** Write an expression with parentheses to show how Jasper would solve 3×9 . (3×10) – 3 (may vary slightly)
 - **b** What is 3×9 ? **27**
 - C What is another way to think about 3×9 ? Work will vary. Example: $(3 \times 5) + (3 \times 4) = 15 + 12 = 27$

(continued on next page)

What's the Problem? page 2 of 2

- 4 Braden loves multiplying by 8 because he can double-double.
 - Write an expression with parentheses to show how Braden would solve 8×7 . a $((7 \times 2) \times 2) \times 2$
 - b What is $8 \times 7?56$
 - What is another way to think about 8×7 ? Work will vary. Example: С $(4 \times 7) \times 2$

5 Jonah was asked to add 4 and 7 then multiply the sum by 9. Which expression shows Jonah's problem? (The *sum* is the answer to an addition problem.)

a $(4+7) \times 9$ **b** $(7-4) \times 9$ $4 + (7 \times 9)$ C

6 Patrick needed to multiply 4 and 6 then subtract 12 from the product. Write an expression with parentheses to show the problem. (The product is the answer to a multiplication problem.) **Example:** $(4 \times 6) - 12$

> Note: parentheses are not required due to order of operations. Students may omit them.

7 Violet divided 81 by 9 then multiplied the quotient by 3. Write an expression with parentheses to show the problem. (The *quotient* is the answer to a division problem.)

Example: $(81 \div 9) \times 3$ Note: parentheses are not required due to order of operations. Students may omit them.

- **8** Solve.
 - a $54 - (3 \times 8)$ 30

b $(28 \div 7) \times 4$ 16

9 **CHALLENGE** Rafael was given the problem 44×9 . Write an expression to show how you would solve the problem.

Work will vary. Example: $(44 \times 10) - (44 \times 1) = 440 - 44 = 396$

2

DATE

Multiplication Connections page 1 of 2

- **ex** To multiply a number by 5, Marissa first multiplies by 10 and then finds half the product.
 - **ex** Write an expression with parentheses to show how Marissa would solve 24×5 . (24 × 10) ÷ 2
 - **ex** What is 24 × 5?
- **1** To multiply a number by 12, Carter likes to multiply the number by 10 and then multiply it by 2 and add the products. Here is a picture of his thinking.

- **a** Write an expression with parentheses to show how Carter would solve 12×16 . Example: $(16 \times 10) + (16 \times 2)$
- **b** What is 12×16 ? **192**
- **2** To multiply a number by 99, Sofia likes to multiply by 100 and then subtract 1 group of the factor. Here is a picture of her thinking.

- **a** Write an expression with parentheses to show how Sofia would solve 8×99 . **Example:** $(8 \times 100) - (8 \times 1)$
- **b** What is 8×99 ? **792**

(continued on next page)

3

NAME

Multiplication Connections page 2 of 2

3	Fill in the d	imensions	of this box:	3_×	3 ×	9 Note: Stu may reco dimensio any orde	ord the ons in
4	Solve the for 2×13 26	110wing pro 4 <u>× 13</u> 52	oblems. 8 <u>× 13</u> 104	10 <u>× 28</u> 280	28 × 5 140	28 <u>× 15</u> 420	13 × 4 52
5	Find the pro	oducts.	_		00		

a $(2 \times 5) \times 8 = \underline{80}$ **b** $(2 \times 8) \times 5 = \underline{80}$ **c** $(5 \times 8) \times 2 = \underline{80}$

6 Which of the problems in item 5 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why? **Responses will vary.**

- 7 Find the products. $(6 \times 7) \times 10 = 420$ **b** $(6 \times 10) \times 7 = 420$ **c** $(7 \times 10) \times 6 = 420$ a
- 8 Which of the problems in item 7 is the easiest for you to solve? In other words, in which order would you prefer to multiply the three factors? Why? **Responses will vary.**